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Abstract

A concise overview of the principles of statistical time series methods for vibration—based Structural
Health Monitoring is presented. The structure of the methods is outlined and their basic features and
operation are explained. The use of various methods, scalar or vector, non—parametric or parametric,
is then demonstrated via their application to damage diagnosis on a laboratory—scale aircraft skeleton
structure.

1 INTRODUCTION

Statistical time series methods for vibration—based Structural Health Monitoring (SHM) utilize random ex-
citation and/or vibration response signals (time series records), along with statistical model building and
decision making tools, for inferring the health state of a structure. They form an important and powerful
category under the so—called data—based methods, which are themselves part of the broader vibration—based
family [1,2,3,4,5,6,7,8,9].

As such, time series methods share the advantages of the broad vibration—based family (for example by
being “global”, in the sense that no measurements near a damage location are needed for effective SHM),
as well as those of the data—based methods (for example by circumventing the need for detailed physics—
based models of the structural dynamics, like Finite Element type models or modal models). Moreover, the
statistical nature of the methods offers effective treatment of uncertainties in the signals employed, plus in
the statistical decision making which may be set—up to operate with specif ed performance characteristics
[7. 8]

Statistical time series methods for SHM utilize scalar or vector random (stochastic) vibration signals
under healthy and potentially damaged states, identif cation of parametric or non—parametric time series
models of the dynamics of each each state, and extraction of a statistical characteristic quantity ) character-
izing the structural state in each case (baseline phase). Damage diagnosis (the term signif es the collection
of all subproblems involved in SHM, namely damage detection, identif cation, and magnitude estimation) is
then accomplished via statistical decision making and estimation techniques implemented in the inspection
phase. In this the current characteristic quantity, say (., is “‘compared” (in a statistical sense) to that of
each potential state as determined in the baseline phase (for example (), of the healthy state for damage
detection). For an extended overview of the principles and techniques of statistical time series methods for
vibration—based SHM the interested reader is also referred to [7, 8, 10].

Non—parametric time series methods are those based on scalar or vector non—parametric time series
representations, such as the Power Spectral Density (PSD) of the Frequency Response Function (FRF) [7, 8],
and have received considerable attention in the literature [11, 12, 13]. Parametric time series methods are
those based on scalar or vector parametric time series representations, such as the AutoRegressive Moving
Average (ARMA) models [14, 7, 8]. This latter category has attracted signif cant attention in recent years
[15. 16, 17, 18].

The goal of this article is to provide a concise overview of the principles and techniques of statistical time
series methods for vibration—based SHM and demonstrate their application on a laboratory structure. The
effectiveness of certain scalar (univariate) and vector (multivariate) methods, of both the non—parametric
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and parametric types, is also assessed. It should be stressed that the article aims, primarily, as a concise
introduction to the topic. As such it is restricted to the presentation of some of the simplest methods — the
interested reader is directed to the literature for additional and more elaborate methods. For instance see the
books [3, 9], the book chapters [8, 10], the article [18] on an assessment of various methods, the articles
[19, 20] on advanced methods allowing for precise damage localization, and the article [21] on damage
diagnosis in Time-Varying structural systems.

The rest of this article is organized as follows: The SHM problem is described in section 2, and the
structure of statistical time series methods for SHM is reviewed in section 3. A concise overview of certain
statistical time series methods for vibration—based SHM is provided in section 4. The scale aircraft skeleton
structure used in this study and the experimental set—up are presented in Section 5, while SHM results are
presented in Section 6. The conclusions are f nally summarized in Section 7.

2 THE SHM PROBLEM

Let S, designate the vibrating structure of interest in its nominal (healthy) state. AlsoletSa, Sp, ... designate
the structure under damage types (damage modes) A.B,... respectively. Each damage type may — of course
— include a continuum of damage sizes (magnitudes), all characterized by common nature and/or location
(for instance damage of various possible magnitudes to a specifc structural element). The structure under
a specif ¢ damage, say of type A and magnitude k, is designated as Sfl. The symbol ij is also used for
designating the damage itself.

During inspection (which may be continuous or periodic in time) the structure is supposed to be in an
unknown health state S, which needs to be determined based on fresh vibration signals. In general these
may include the force excitation x,,[t] and/or vibration response y,,[t] (t = 1,2,..., N) signals (¢ designates
discrete time, with the corresponding analog time being (¢ — 1) - T, with T standing for the sampling period:
the subscript “u” designates the current/unknown structural health state).

Let the complete signal records obtained during inspection be designated as ()} and (1)}, and let the
excitation—response signals be collected into the vector z,,[t] = [w,[t] wu[t]] (t = 1,2,...,N) (lower/upper
case bold face symbols designate vector/matrix quantities, respectively: by convention all vectors are column
vectors). The complete data record is then designated as (zu)jl\‘r .

It should be noted that all collected signals need to be suitably pre-processed [2, 22]. This may generally
include low pass or band pass signal f ltering within a selected bandwidth (frequency range), signal subsam-
pling (in case the originally used sampling frequency is too high), as well as proper scaling. The latter is
used for numerical reasons, but also for counteracting — to the extent possible — different operating (including
excitation levels) and/or environmental conditions. In the case of linear time—invariant (stationary) structural
dynamics, scaling typically involves subtraction of each signal’s sample (estimated) mean and normalization
by its sample (estimated) standard deviation. In case of multiple excitations care should be exercised in
order to ensure minimal crosscorrelation among them. Scaling may not be generally applied in the case of
non-linear structural or non—stationary dynamics.

Given the data (z,)Y, collected during the inspection phase, the problem of SHM (determining the
current health state of the structure) may be analyzed into three subproblems:

(a) Damage detection, which is the binary decision making subproblem in which the mere presence of
damage is determined (S, = S, or S, # S, ).

(b) Damage identif cation, which is the multiple decision making subproblem pertaining to the identif cation
(characterization, localization) of a detected damage. In the present context damage type (mode) A
(S4). B (Sp). and so on.

(c) Damage estimation is the subproblem pertaining to damage magnitude (size) estimation.
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3 THE STRUCTURE OF STATISTICAL TIME SERIES METHODS

3.1 The Operational Viewpoint

From an operational viewpoint the tackling of the aforementioned subproblems requires — in addition to
(zu)jl\‘r — the availability of similar data records from the nominal (healthy) structure and also from the
structure under each damage state. That is, in present terms, 2,[t] (¢ = 1,2,...,N) corresponding to
S,. as well as z4[t].zg[t],... (t = 1,2,...,N) corresponding to S4,Sp, ..., respectively. Additionally,
data records corresponding to various damage magnitudes within each damage type are required. These
data records may be obtained either from the actual structure (whenever possible), or from laboratory scale
models, or from detailed simulation models.

The data records are obtained and processed in an initial baseline phase. This is done once. On the other
hand, the current data acquisition, processing, and decision making are taking place in a second operational
phase that is referred to as the inspection phase.

3.2 The Conceptual Viewpoint

From a conceptual viewpoint statistical time series methods include analysis (modelling) and statistical de-
cision making. (a) The analysis part includes characterization and parametric or non-parametric modelling
of part of the dynamics. The aim is the extraction, from each data record, of a characteristic quantity, des-
ignated as @ (which is a function of zJ) and plays an instrumental role in the decision making part. (b)
In the statistical decision making part decisions are made by “comparing”, via formal statistical hypothesis
testing procedures, the current characteristic quantity (), to its counterparts Qo, Q4. @B, ... pertaining to
the various possible structural states (0, A, B, ..., respectively).
Damage detection is then formulated as a binary composite hypothesis testing problem expressed as:

H,: Q,~Qy (null hypothesis - healthy structure)

1
Hy: Q,+# Qy (alternative hypothesis - damaged structure) M

with ~ designating a proper relationship (such as equality, inequality, and so on).
Damage identif cation, is formulated as a multiple hypothesis testing problem which may be expressed

as:
Hy: Qa~Qy (hypothesis A - damage type A)

Hp: Qp~Qy (hypothesis B - damage type B) 2)

Damage estimation is a generally treated via interval estimation techniques.

Remarks: The design of a binary statistical hypothesis test (such as that of Equation (1)) may be based
upon the probabilities of #ype I and type II error occurrence. The frst — designated as o and also referred to
as the fype I risk — is the probability of rejecting the null hypothesis H,, although it is true (false alarm). The
second probability — designated as 3 and also referred to as fype II risk — is the probability of accepting the
null hypothesis H, although it is not true (missed fault). The designs treated in this article are based upon
selected type I error occurrence probability (), and utilize the probability density function of a relevant
random quantity under the null (H,) hypothesis of a healthy current structure. In selecting « it should be
born in mind that a decrease/increase in it results in a corresponding increase/decrease in 3. The reader is
referred to references such as Basseville & Nikiforov [23, subsection 4.2] and Montgomery [24, subsection
3.3] for details on statistical hypothesis testing.
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Table 1: Characteristics of statistical time series methods for SHM

Method Principle Test Statistic

PSD based Su(w) = So(w) F = So(w)/8u(w) ~ F(2K,2K)
FRF based 8|H (jw)| = |Ho(jw)| — |Hu(jw)| =0 Z = §|H(jw)|/vV25u ~ N(0,20% (w))
Residual variance o2, é o2, F=52,/5% ~ F(N,N —d)
Model parameter 60 =0, —0,20 2 =66 (2P5)"150 ~ x2(d)
Residual likelihood 6, = 6, Z‘:‘rzl(ez [t,60] - Xo - euft,8,]) < I

S(w): Power Spectral Density (PSD) function; |H (jw)|: Frequency Response Function (FRF) magnitude

oy standard deviation of |ﬁ o(jw)|: @: model parameter vector; d: parameter vector dimensionality; Pg: covariance of 6,
o2, variance of residual signal obtained by driving the healthy structure signals through the healthy model

o2, variance of residual signal obtained by driving the current structure signals through the healthy model

e: k-variate residual sequence; X: residual covariance matrix; [: user def ned threshold; N: signal length in samples

In all cases estimators/estimates are designated by a hat.

The subscripts “o” and “u” designate healthy and current (unknown) structural state, respectively.

3.3 Types of time series methods

Statistical time series methods for SHM may be classif ed as excitation-response or response-only methods,
depending on whether the characteristic quantity () is constructed by using or not using, respectively, the
excitation signal(s). As already mentioned, they may be also classifed as scalar or vector, and as non-
parametric OI parametric.

4 OVERVIEW OF STATISTICAL TIME SERIES METHODS FOR
VIBRATION-BASED SHM

A concise overview of some of the main methods, both scalar and vector, is provided below.

4.1 Scalar methods

Two non—parametric methods, namely a Power Spectral Density (PSD) and a Frequency Response Func-
tion (FRF) based method, and a parametric method, namely a residual variance based method, are briefy
reviewed. Their main characteristics are summarized in Table 1.

Power Spectral Density (PSD) based method. Damage detection and identif cation is in this case
tackled via changes in the PSD of a measured vibration response signal (non—parametric method). The exci-
tation is assumed unavailable (response—only case). The method’s characteristic quantity is the PSD function
Q@ = S(w) (w designating frequency — Table 1). Damage detection is based on conf rmation of statistically
signif cant deviations from the nominal healthy state at some frequency [7, 8]. Damage identif cation may
be achieved by performing hypothesis tests comparing the current PSD to those corresponding to different
damage types and obtained in the baseline phase. It should be noted that response-scaling is important in
order to properly account for potentially different excitation levels.

Frequency Response Function (FRF) based method. This is similar to the PSD method, except that it
requires the availability of both the excitation and response signals (excitation—response case) and uses the
FRF magnitude as its characteristic quantity (non—parametric method), thus Q@ = |H (jw)| with j = /=1
(Table 1). The main idea is the comparison of the FRF magnitude of the current structural state to that of
the healthy structure. Damage detection is based on conf rmation of stafistically signif cant deviations from
the nominal healthy state at some frequency [7, 8]. Damage identif cation may be achieved similarly to the
previous case.

Residual variance based method. In this method the characteristic quantity is the model residual vari-
ance (Table 1). The main idea is based on the fact that the model (which is now parametric) matching the
current state of the structure should generate a residual sequence characterized by minimal variance [7, 8].
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Thus damage detection may be achieved by examining whether or not the residual variance is minimal [7, 8].
The method uses classical tests on the residuals and offers simplicity and no need for model re—estimation in
the inspection phase.

4.2 Vector methods

Two vector (multivariate) parametric time series methods for SHM, namely a model parameter based method
and a residual likelihood function based method, are brief y reviewed. The main characteristics of the meth-
ods are also summarized in Table 1.

Model parameter based method. This method bases damage detection and identif cation on a charac-
teristic quantity ¢ which is a function of the parameter vector 8 of a parametric time series model (parametric
method —see Table 1) [7, 8]. The model has to be re-estimated in the inspection phase based on signals from
the current (unknown) state of the structure. Damage detection is based on testing for statistically signif cant
changes in the parameter vector 8 between the nominal and current structures through a hypothesis testing
problem. Damage identif cation may be based on multiple hypothesis testing comparing the current param-
eter vector to those corresponding to different damage types. In this article a procedure that uses successive
binary tests is employed.

Residual likelihood function based method. In this method damage detection is based on the likelihood
function evaluated for the current signal(s) under each one of the considered structural states [25, pp. 119—
120], [7, 8] The hypothesis corresponding to the largest likelihood is selected as true for the current structural
state. Damage identif cation is achieved by computing the likelihood function of the current signal(s) for the
baseline models corresponding to damaged structural states and accepting the hypothesis that corresponds
to the maximum value of the likelihood. By including the healthy baseline model, damage detection is also
treated. The method offers simplicity as there is no need for model re—estimation in the inspection phase.

S THE STRUCTURE AND THE EXPERIMENTAL SET-UP

5.1 The structure

The structure used in the study is a scale aircraft skeleton designed by ONERA in conjunction with the
GARTEUR SM-AG19 Group and manufactured at the University of Patras (Fig. 1) [8, 26]. It represents
a typical design and consists of six solid beams with rectangular cross sections representing the fuselage
(1500 x 150 x 50 mm), the wing (2000 x 100 x 10 mm), the horizontal (300 x 100 x 10 mm) and vertical
stabilizers (400 x 100 x 10 mm), and the right and left wing—tips (400 x 100 x 10 mm). All parts are
constructed from standard aluminum and are jointed together via steel plates and bolts. The total mass of the
structure is approximately 50 kg.

5.2 The Damage Types and the Experiments

The structure is suspended through a set of bungee cords and hooks from a long rigid beam sustained by two
heavy—type stands (Fig. 1). The suspension is designed in a way to exhibit a pendulum rigid body mode
below the frequency range of interest, as the boundary conditions are free—free.

The excitation is broadband random stationary Gaussian applied vertically at the right wing—tip (Point X,
Fig. 1) through an electromechanical shaker (MB Dynamics Modal 50A, max load 225 N). The actual force
exerted on the structure is measured via an impedance head (PCB M288D01), while the resulting vertical
acceleration responses at Points Y1, Y2, Y3 and Y4 (Fig. 1) are measured via lightweight accelerometers
(PCB 352A10 ICP). The force and acceleration signals are driven through a conditioning charge amplif er
(PCB 481A02) into the data acquisition system based on Sigl.ab 2042 measurement modules.

The damage considered corresponds to the loosening of a variable number of bolts at different joints of
the structure (Fig. 1 — also see [26]). Six distinct types are considered and summarized in Table 2.
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POINT X

Figure 1: The aircraft scale skeleton structure and the experimental set-up: The force excitation (Point
X), the vibration measurement locations (Points Y1 — Y4), and the bolts connecting the various ele-
ments of the structure.

Table 2: Experimental details & the damage types

Structural State  Description No of
Experiments
Healthy — 60
Damage A loosening of bolts A1, A4, Z1, 72 40
Damage B loosening of bolts D1, D2, D3 40
Damage C loosening of bolts K1 40
Damage D loosening of bolts D2, D3 40
Damage E loosening of bolts D3 40
Damage F loosening of bolts K1, K2 40

Sampling frequency: f. = 512 Hz, Signal bandwidth: [4 — 200] Hz
Signal length IV in samples (in seconds):

Non-parametric methods: N = 46 080 (90 s)

Parametric methods: N = 15 000 (29 s)

The assessment of the statistical time series methods employed is based on 60 experiments for the healthy
and 40 experiments for each considered damaged state (damage types A, B, ..., F — see Table 2). Four
vibration measurement locations (Fig. 1, Points Y1 — Y4) are employed in order to determine the ability of
the methods in treating damage diagnosis using single and multiple vibration response signals.

For damage detection a single healthy data set is used for establishing the baseline (reference) set, while
60 healthy and 240 damaged sets (six damage types with 40 experiments each) are used as inspection data
sets. For the damage identif cation task, a single data set for each damaged structural state (damage types A,
B....,F)is used for establishing the baseline (reference) set, while 240 sets are considered as inspection data
sets (correspondmg to unknown structural states). The time series models are estimated and the correspond-
ing estimates of the characteristic quantity () are extracted (Q As Q By---s Qp in the baseline phase; QM
the inspection phase). Damage identif cation is based on successive bmaly hypothesis tests — as opposed to
multiple hypothesis tests [8].

6 EXPERIMENTAL DAMAGE DIAGNOSIS RESULTS

Power Spectral Density (PSD) Based Method. Estimation is based on the Welch Power Spectral Density
estimation method, with no—overalp, Hamming window, signals that are N = 46080 samples (= 90 s)
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Figure 2: PSD based method: Indicative damage detection results (output 3) at the o = 1075 risk level.
The actual structural state is shown above each plot.

long, segment length I = 2048 samples, and K = 22 non—overlapping segments — the achieved frequency
resolution is § f = 0.25 Hz.

Typical damage detection results obtained from the vibration measurement location Y3 (output 3) are
presented in Fig. 2. Evidently, correct detection at the o = 107 risk level is obtained in each case, as the
test statistic does not exceed the critical points (dashed horizontal lines) in the healthy case, while it exceeds
them in each damage case. It should be observed that damage types D and E are harder to detect.

Summary damage diagnosis results for the considered vibration measurement locations (Fig. 1) are
presented in Table 3. The PSD based method achieves accurate damage detection as no false alarms are
exhibited, while the number of missed damage cases is zero for all considered damage states. The method is
also capable of identifying the actual damage type, as zero damage misclassif cation errors are obtained for
damage types A, C, D and F, while some errors errors are reported for damage type E. The misclassif cation
errors increase for damage type B when the measurement location Y3 or Y4 are used.

Frequency Response Function (FRF) Based Method. Figure 3 presents damage detection results via
the FRF based method obtained at vibration measurement location Y2 (output 2). Evidently, correct detection
at the @ = 1079 risk level is achieved in each case, as the test statistic is shown not to exceed the critical
points (dashed horizontal lines) in the healthy case, while it exceeds the critical point in the damaged cases.
Like before, damage types D and E are harder to detect.

Summary damage detection and identif cation results for the considered vibration measurement locations
(Fig. 1) are presented in Table 3. The FRF magnitude based method achieves effective damage detection as
no false alarms or missed damages are reported (Table 3). The method on the other hand, exhibits decreased
accuracy in damage identif cation as signif cant numbers of damage misclassif cation errors are reported for

STO-EN-AVT-220 1-7



sal

Statistical Time Series Methods for Vibration-Based SHM organization
Healthy Structure Damage A Damage B
10 10* 10*
8 2
Z 6 -
B foemmmmmaaa 10° - 4
L 4
N 5 10”
10
2
107 107
50 100 150 200 50 100 150 200 50 100 150 200
Frequency (Hz) Frequency (Hz) Frequency (Hz)
Damage C Damage D Damage E
10* 20 10

15

10

|Z| statistic

-
=

10 0 0 =
50 100 150 200 50 100 150 200 50 100 150 200

Frequency (Hz) Frequency (Hz) Frequency (Hz)

Figure 3: FRF magnitude based method: Indicative damage detection results (output 2) at the o =
1075 risk level. The actual structural state is shown above each plot.

damage types B and D.

Residual Variance Based Method. The method is based on identif ed 4—variate VARX(80, 80) models
obtained in the baseline phase, as well as on corresponding models from the current (unknown) data records
(inspection phase). Damage detection and identif cation are achieved via statistical comparison of the two
residual variances (each one of the scalar responses is considered separately).

Typical damage detection results obtained via the residual variance based method for vibration measure-
ment location Y2 are shown in Fig. 4. Evidently, correct detection (Fig. 4) is obtained in each considered
case, as the test statistic is shown not to exceed the critical point in the healthy case, while it exceeds it in the
damaged test cases.

Summary damage detection and identif cation results for the considered vibration measurement locations
are presented in Table 3. The method achieves effective damage detection and identif cation as no false
alarms, missed damages, or damage misclassif cation cases are observed.

Model parameter Based Method. The model parameter based method (excitation—response case)
employs the identifed in the baseline phase 4—variate VARX(80,80) models, as well as an identif ed
VARX(80, 80) model for each current data record (inspection phase).

Figure 5 presents typical parametric damage detection results. The healthy test statistics are shown in
circles (60 experiments), while the least severe damage types D and E are presented with asterisks and
diamonds, respectively (one for each one of the 40 experiments). Evidently, correct detection is obtained in
each case, as the test statistic is shown not to exceed the critical point in the healthy cases, while it exceeds
it in the damaged cases (note the logarithmic scale on the vertical axis).
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Model Residual Variance Based Method
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Figure 4: Residual variance based method: Indicative damage detection results (output 2; healthy — 60
experiments; damaged — 200 experiments). A damage is detected if the test statistic exceeds the critical
point (dashed horizontal line).

As indicated in Table 4, the model parameter based method achieves accurate damage detection and
identif cation, as no false alarm, missed damage, or damage misclassif cation cases are reported.

Likelihood Function Based Method. The residual likelihood function based method is based on the
identif ed 4—variate VARX(80, 80) models from the baseline phase. Figure 6 presents typical damage detec-
tion results. Correct detection is obtained in each case, as the test statistic is shown not to exceed the critical
point in the healthy cases, while it exceeds it in the damaged cases.

The method achieves accurate damage detection and identif cation, as no false alarm, missed damage,
or damage misclassif cation cases are reported. Summary damage detection and identif cation results are
presented in Table 4.

6.1 Discussion

Scalar time series methods for SHM are shown to achieve effective damage diagnosis, although non—
parametric scalar methods encounter some diff culties. The PSD based method achieves excellent damage
diagnosis, although it exhibits some misclassif cation errors for damage type E. The misclassif cation errors
increase for damage type B and the Y3 and Y4 vibration measurement locations. The FRF based method
achieves accurate damage detection with no false alarms or missed damages, except for vibration measure-
ment location Y4 for which it exhibits an increased number of false alarms. Moreover, it faces problems in
correctly identifying damage types B and D, as the number of damage misclassif cation cases is higher for
these damage types which involve loosening of bolts on the left wing—tip of the aircraft (Fig. 1). On the other
hand, the parametric residual variance based method achieves excellent performance in accurately detecting
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Figure 5: Model parameter based method: Indicative damage detection results for three structural
states (healthy — 60 experiments; damaged — 80 experiments). A damage is detected if the test statistic
exceeds the critical point (dashed horizontal line).

and identifying damage for all considered vibration measurement locations.

Vector time series methods for SHM achieve very accurate damage diagnosis, as with properly adjusted
risk level « (type I error) no false alarm, missed damage, or damage misclassif cation cases are observed.
Moreover, the methods demonstrate global damage detection capability. Nevertheless, parametric vector
models require accurate parameter estimation and appropriate model structure (order) selection in order to
accurately represent the structural dynamics and effectively tackle damage diagnosis. Therefore, these meth-
ods require user expertise and are somewhat more elaborate than their scalar or non—parametric counterparts.

Furthermore, the number and location of vibration measurement sensors is an important issue. Several
vibration based damage diagnosis techniques that appear to work well in certain cases, could actually perform
poorly when subjected to the measurement constraints imposed by actual testing [2]. Techniques that are to
be seriously considered for implementation in the feld should demonstrate that they can perform well under
limitations such as a small number of measurement locations and the constraint that these locations should
be selected a—priori, without knowledge of the actual damage location.

It is also noteworthy that in order for certain parametric methods to work effectively, a very small value
of the type I risk a is often needed. This is due to the fact that the currently used stochastic time series
models do not fully capture the experimental, operational and environmental uncertainties that the structure
is subjected to.
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Model Residual Likelihood Function Based Method
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Figure 6: Residual likelihood function based method: Indicative damage detection results (healthy —
60 experiments; damaged — 200 experiments). A damage is detected if the test statistic exceeds the

critical point (dashed horizontal line).

Table 3: Scalar methods damage detection & identif cation — summary results

Damage Detection Damage Identif cation

Method False Missed damage Damage nusclassif cation

alarms [ dam A dam B dam C dam D dam E dam F [ dam A dam B dam C dam D dam E dam F
PSD based
response Y1 0/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40
response Y2 0/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40
response Y3 0/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 21/40 0/40 0/40 1/40 0/40
response Y4 0/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 21/40 0/40 0/40 2/40 0/40
FRF based
response Y1 1/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 10/40 6/40 5/40 2/40 0/40
response Y2 0/60 0/40 0/40 0/40 0/40 1/40 0/40 0/40 4/40 10/40 22/40 9/40 3/40
response Y3 0/60 0/40 0/40 0/40 1/40 0/40 0/40 0/40 7/40 2/40 9/40 5/40 1/40
response Y4  35/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 8/40 0/40 8/40 2/40 0/40
Res. variance!
response Y1 0/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40
response Y2 0/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40
response Y3 0/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40
response Y4 0/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40
T adjusted o

7 CONCLUDING REMARKS

e Statistical time series methods for vibration—based SHM achieve effective damage detection, iden-
tif cation (including localization), and damage magnitude estimation based on (i) random excitation
and/or vibration responses, (ii) statistical model building, and (iii) statistical decision making under
uncertainty.
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Table 4: Vector methods damage detection and identif cation — summary results

Damage Detection Damage Identif cation

Method False Missed damage Damage musclassif cation

alarms | dam. A dam B dam. C dam D dam E dam F | dam A dam B dam C dam D dam E dam F

Mod. parameter? 0/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40
Res. likelihoodt 0/60 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40

T adjusted o

e The methods are data—based, inverse—type, and of general applicability.

e In addition to sharing the benef'ts of general vibration based methods (like “global” coverage, time
and cost effectiveness, automation capability) statistical time series methods offer a number of unique
advantages: (i) No need for physics—based or fnite element models; (ii) no need for complete struc-
tural models (partial models and a limited number of responses suff ce); (iii) inherent accounting of
uncertainty; (iv) statistical decision making with specif ed performance characteristics; (v) potential
use of ambient random vibration data records.

e The methods’ ability to provide effective damage diagnosis using a low—frequency bandwidth and a
very small number of sensors is remarkable. It is also very important, as in practice the excitation
may be ambient (and thus of limited bandwidth), while the number of sensors may need to be (due to
various reasons) constrained.

e Statistical time series methods may be either of the non—parametric or parametric types. The latter are
generally more elaborate, but offer potentially improved capabilities.

e The methods offer “global” damage diagnosis, as they are able to diagnose damage that is either “local”
or “remote” with respect to the sensor location used.

e The availability of data records corresponding to various potential damage scenarios is necessary for
damage identif cation and magnitude estimation. This may not be possible with the actual structure
itself, but laboratory scale models or analytical (like Finite Element) models may be used for this
purpose in the baseline (training) phase.
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